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Debouncing a Switch

A Design Example
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Background and Motivation
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When you throw a switch 
(button or two-pole switch)…

• It often bounces…



Debounce
Page 4

ECE 238L © 2006

Another switch…

switch

after
inversion
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Yet Another…
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Still Yet Another…
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Causes

• Mechanical switch
– Not an instant, once-only make-or-break
– Spring loaded – contacts literally bounce
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Source of Errors

• 20ns clock clock period is very short compared to bouncing…
• Downstream circuitry will see every bounce as an input change

20ns
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FSM-Based Solution
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Solutions

• Single-output switch
– Since all you see is bouncing value

• timing-based solution can be employed

• There are other solutions but they require a 
different kind of switch
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Timing-Based Solution

• Only declare an input change after signal has been 
stable for at least 5ms

5ms
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FSM Solution

• Simple enough that an FSM might not be 
required
– Easy to concoct a sequential circuit to do this 

with a counter and a single FF

• Let’s do it with an FSM
– If solution requires only a counter and a single 

FF, we will find that solution
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Draw a Timing Diagram

noisy

debounced

time

5ms 5ms
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Draw a System Block Diagram

Finite
State

Machine

clk reset

noisy debounced

clrTimer Timer
(5ms)timerDone

clk

Very reminiscent of our car wash controller…
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The Design of the FSM
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Draw a State Graph
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noisy’•timerDone

noisy
debounced S1
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Draw a State Graph

S2

S3
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noisy’

noisy’

noisy•timerDone’
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noisy•timerDone

debounced
clrTimer

noisy’

S0

noisy’•timerDone’
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noisy
debounced S1

Debounced output
is low…
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Debounced output
is high…

Draw a State Graph
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noisy’

noisy•timerDone’
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noisy•timerDone

debounced
clrTimer
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An Improved State Graph

S1

noisy’/clrTimer

noisy/clrTimer

noisy•timerDone

debounced

S0

noisy’•timerDone

noisy’•timerDone’

noisy•timerDone’

As mentioned, Mealy
machines often require
fewer states…

Looks like the FSM
can be implemented
with just a single FFDo you see why there is no

need for a reset input?
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Reduce FSM to Logic
NS = CS’•noisy•timerDone + CS•noisy + CS•noisy’•timerDone’

S0 = CS’ S1 = CS     noisy = N     timerDone = T

NT
CS 00 01 11 10

0

1

1

11 1

NS = noisy•timerDone + CS•timerDone’

clrTimer = noisy’•CS’ + noisy•CS

debounced = CS
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Reduce FSM to Logic

This is smaller than one-hot implementation

In addition, the one-hot would require a reset input to get it to state S0

debounced == CSD   Q

clrTimer

noisy

timerDone

CS

noisy

NS = noisy•timerDone + CS•timerDone’

clrTimer = noisy’•CS’ + noisy•CS

debounced = CS
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noisy is an Asynchronous Input

If less than 20ns wide, FSM may not see it

• Signal noisy is asynchronous
– No restrictions on pulse widths

• We will live with this possibility…
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More on Asynchronous Input

Finite
State

Machine

clk reset

noisy debounced

clrTimer Timer
(5ms)timerDone

clk

Classical asynch input handling problem:
1. FSM may see noisy change and change state
2. Timer may not see clrTimer that results

Or, the other way around may occur…

Will this cause incorrect operation?
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Asynch Input Problem

S1

noisy’/clrTimer

noisy/clrTimer

noisy•timerDone

debounced

S0

noisy’•timerDone

noisy’•timerDone’

noisy•timerDone’

Look at the transitions –
will previous slide’s
problem cause a 
malfunction??

If you determine that
a problem may result,
what is easiest way to
solve the problem?
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Design of the Timer
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Timer Calculations

• Assume system runs at 50MHz (20ns period)
• 5ms/20ns = 250,000
• An 18-bit counter will work…
• 218 is a bit longer than 250,000 (262,144)

– But is close enough to 5ms for our purposes
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Timer Structure

• 19 inputs: 18 CS bits + 1 clrTimer bit
– Very, very large truth table

• A better structure is:
– Register that selects between CS+1 and 0

• This is the technique of Chapter 12 (registers)
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Timer Structure

+1 0

10

clrTimer

18
timerDone

18
18

D   Q

clk

18

18 18-input
AND



Debounce
Page 29

ECE 238L © 2006

Improved Timer Structure

+1
clrTimer

18
timerDone18

D   Q

clk

18

18 18-input
AND18

This is a simpler way to 
conditionally generate zeroes.

A synthesizer likely would have 
generated this from Verilog or
VHDL code containing a MUX
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Building the +1 Circuit – Version #1

d17-d0

”000000000000000001” output

The adder would be built
as outlined back in Chapter 8
using full adder blocks.

However, half the full adder
inputs will be ‘0’ – there ought
to be a better way…
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A Full-Adder with ‘0’ Inputs
S

A
‘0’
Cin

Cout

A
‘0’
‘0’

Cin
A

Cin

Full Adder Cout
‘0’

'0'

A
Cin

A
Cin

Cout

S
A

Cin
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A Half-Adder
S

A
‘0’
Cin

Cout

A
‘0’
‘0’

Cin
A

Cin

Full Adder Cout
‘0’

'0'

A
Cin

A
Cin

Cout

S
A

Cin

Called a half-adder

Will add 2 bits together
and generate sum and carry.
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Building the +1 Circuit - Version #2 

Half
Adder

A0

S0

C0 ‘1’Half
Adder

A1

S1

C1Half
Adder

A2

S2

C2

Half-adders add A’s and carries
‘1’ on right end is the +1
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Building an 18-Bit AND

This is one way…

Synthesizers are good at
building structures like
this from lower-level
building blocks.  Just write an
18-bit AND in your Verilog
or VHDL code…

If circuit has special structures 
for wide logic, synthesizer 
likely will use it (carry/cascade
logic in an FPGA is an example)
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Debouncer Summary

• Structure is timer + FSM
• 2-state FSM makes NS logic trivial
• Asynchronous input makes it possible (but 

unlikely) to miss a glitch on input noisy
– If desired, synchronize noisy with a FF

• Counter too large for conventional techniques
– Use MUX+register techniques of Chapter 12

• NOTE: FSM technique resulted in FF+counter
mentioned previously…
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