
Debounce
Page 1

ECE 238L © 2006

Debouncing a Switch

A Design Example

Debounce
Page 2

ECE 238L © 2006

Background and Motivation

Debounce
Page 3

ECE 238L © 2006

When you throw a switch
(button or two-pole switch)…

• It often bounces…

Debounce
Page 4

ECE 238L © 2006

Another switch…

switch

after
inversion

Debounce
Page 5

ECE 238L © 2006

Yet Another…

Debounce
Page 6

ECE 238L © 2006

Still Yet Another…

Debounce
Page 7

ECE 238L © 2006

Causes

• Mechanical switch
– Not an instant, once-only make-or-break
– Spring loaded – contacts literally bounce

Debounce
Page 8

ECE 238L © 2006

Source of Errors

• 20ns clock clock period is very short compared to bouncing…
• Downstream circuitry will see every bounce as an input change

20ns

Debounce
Page 9

ECE 238L © 2006

FSM-Based Solution

Debounce
Page 10

ECE 238L © 2006

Solutions

• Single-output switch
– Since all you see is bouncing value

• timing-based solution can be employed

• There are other solutions but they require a
different kind of switch

Debounce
Page 11

ECE 238L © 2006

Timing-Based Solution

• Only declare an input change after signal has been
stable for at least 5ms

5ms

Debounce
Page 12

ECE 238L © 2006

FSM Solution

• Simple enough that an FSM might not be
required
– Easy to concoct a sequential circuit to do this

with a counter and a single FF

• Let’s do it with an FSM
– If solution requires only a counter and a single

FF, we will find that solution

Debounce
Page 13

ECE 238L © 2006

Draw a Timing Diagram

noisy

debounced

time

5ms 5ms

Debounce
Page 14

ECE 238L © 2006

Draw a System Block Diagram

Finite
State

Machine

clk reset

noisy debounced

clrTimer Timer
(5ms)timerDone

clk

Very reminiscent of our car wash controller…

Debounce
Page 15

ECE 238L © 2006

The Design of the FSM

Debounce
Page 16

ECE 238L © 2006

Draw a State Graph

S2

S3

noisy

noisy’

noisy•timerDone’

noisy

clrTimer

noisy’

noisy•timerDone

debounced
clrTimer

noisy’

S0

noisy’•timerDone’

noisy’•timerDone

noisy
debounced S1

Debounce
Page 17

ECE 238L © 2006

Draw a State Graph

S2

S3

noisy

noisy’

noisy’

noisy•timerDone’

noisy

clrTimer

noisy•timerDone

debounced
clrTimer

noisy’

S0

noisy’•timerDone’

noisy’•timerDone

noisy
debounced S1

Debounced output
is low…

Debounce
Page 18

ECE 238L © 2006

Debounced output
is high…

Draw a State Graph

S2

S3

noisy

noisy’

noisy’

noisy•timerDone’

noisy

clrTimer

noisy•timerDone

debounced
clrTimer

noisy’

S0

noisy’•timerDone’

noisy’•timerDone

noisy
debounced S1

Debounce
Page 19

ECE 238L © 2006

An Improved State Graph

S1

noisy’/clrTimer

noisy/clrTimer

noisy•timerDone

debounced

S0

noisy’•timerDone

noisy’•timerDone’

noisy•timerDone’

As mentioned, Mealy
machines often require
fewer states…

Looks like the FSM
can be implemented
with just a single FFDo you see why there is no

need for a reset input?

Debounce
Page 20

ECE 238L © 2006

Reduce FSM to Logic
NS = CS’•noisy•timerDone + CS•noisy + CS•noisy’•timerDone’

S0 = CS’ S1 = CS noisy = N timerDone = T

NT
CS 00 01 11 10

0

1

1

11 1

NS = noisy•timerDone + CS•timerDone’

clrTimer = noisy’•CS’ + noisy•CS

debounced = CS

Debounce
Page 21

ECE 238L © 2006

Reduce FSM to Logic

This is smaller than one-hot implementation

In addition, the one-hot would require a reset input to get it to state S0

debounced == CSD Q

clrTimer

noisy

timerDone

CS

noisy

NS = noisy•timerDone + CS•timerDone’

clrTimer = noisy’•CS’ + noisy•CS

debounced = CS

Debounce
Page 22

ECE 238L © 2006

noisy is an Asynchronous Input

If less than 20ns wide, FSM may not see it

• Signal noisy is asynchronous
– No restrictions on pulse widths

• We will live with this possibility…

Debounce
Page 23

ECE 238L © 2006

More on Asynchronous Input

Finite
State

Machine

clk reset

noisy debounced

clrTimer Timer
(5ms)timerDone

clk

Classical asynch input handling problem:
1. FSM may see noisy change and change state
2. Timer may not see clrTimer that results

Or, the other way around may occur…

Will this cause incorrect operation?

Debounce
Page 24

ECE 238L © 2006

Asynch Input Problem

S1

noisy’/clrTimer

noisy/clrTimer

noisy•timerDone

debounced

S0

noisy’•timerDone

noisy’•timerDone’

noisy•timerDone’

Look at the transitions –
will previous slide’s
problem cause a
malfunction??

If you determine that
a problem may result,
what is easiest way to
solve the problem?

Debounce
Page 25

ECE 238L © 2006

Design of the Timer

Debounce
Page 26

ECE 238L © 2006

Timer Calculations

• Assume system runs at 50MHz (20ns period)
• 5ms/20ns = 250,000
• An 18-bit counter will work…
• 218 is a bit longer than 250,000 (262,144)

– But is close enough to 5ms for our purposes

Debounce
Page 27

ECE 238L © 2006

Timer Structure

• 19 inputs: 18 CS bits + 1 clrTimer bit
– Very, very large truth table

• A better structure is:
– Register that selects between CS+1 and 0

• This is the technique of Chapter 12 (registers)

Debounce
Page 28

ECE 238L © 2006

Timer Structure

+1 0

10

clrTimer

18
timerDone

18
18

D Q

clk

18

18 18-input
AND

Debounce
Page 29

ECE 238L © 2006

Improved Timer Structure

+1
clrTimer

18
timerDone18

D Q

clk

18

18 18-input
AND18

This is a simpler way to
conditionally generate zeroes.

A synthesizer likely would have
generated this from Verilog or
VHDL code containing a MUX

Debounce
Page 30

ECE 238L © 2006

Building the +1 Circuit – Version #1

d17-d0

”000000000000000001” output

The adder would be built
as outlined back in Chapter 8
using full adder blocks.

However, half the full adder
inputs will be ‘0’ – there ought
to be a better way…

Debounce
Page 31

ECE 238L © 2006

A Full-Adder with ‘0’ Inputs
S

A
‘0’
Cin

Cout

A
‘0’
‘0’

Cin
A

Cin

Full Adder Cout
‘0’

'0'

A
Cin

A
Cin

Cout

S
A

Cin

Debounce
Page 32

ECE 238L © 2006

A Half-Adder
S

A
‘0’
Cin

Cout

A
‘0’
‘0’

Cin
A

Cin

Full Adder Cout
‘0’

'0'

A
Cin

A
Cin

Cout

S
A

Cin

Called a half-adder

Will add 2 bits together
and generate sum and carry.

Debounce
Page 33

ECE 238L © 2006

Building the +1 Circuit - Version #2

Half
Adder

A0

S0

C0 ‘1’Half
Adder

A1

S1

C1Half
Adder

A2

S2

C2

Half-adders add A’s and carries
‘1’ on right end is the +1

Debounce
Page 34

ECE 238L © 2006

Building an 18-Bit AND

This is one way…

Synthesizers are good at
building structures like
this from lower-level
building blocks. Just write an
18-bit AND in your Verilog
or VHDL code…

If circuit has special structures
for wide logic, synthesizer
likely will use it (carry/cascade
logic in an FPGA is an example)

Debounce
Page 35

ECE 238L © 2006

Debouncer Summary

• Structure is timer + FSM
• 2-state FSM makes NS logic trivial
• Asynchronous input makes it possible (but

unlikely) to miss a glitch on input noisy
– If desired, synchronize noisy with a FF

• Counter too large for conventional techniques
– Use MUX+register techniques of Chapter 12

• NOTE: FSM technique resulted in FF+counter
mentioned previously…

	Debouncing a Switch
	Background and Motivation
	When you throw a switch �(button or two-pole switch)…
	Another switch…
	Yet Another…
	Still Yet Another…
	Causes
	Source of Errors
	FSM-Based Solution
	Solutions
	Timing-Based Solution
	FSM Solution
	Draw a Timing Diagram
	Draw a System Block Diagram
	The Design of the FSM
	Draw a State Graph
	Draw a State Graph
	Draw a State Graph
	An Improved State Graph
	Reduce FSM to Logic
	noisy is an Asynchronous Input
	More on Asynchronous Input
	Asynch Input Problem
	Design of the Timer
	Timer Calculations
	Timer Structure
	Timer Structure
	Improved Timer Structure
	Building the +1 Circuit – Version #1
	A Full-Adder with ‘0’ Inputs
	A Half-Adder
	Building the +1 Circuit - Version #2
	Building an 18-Bit AND
	Debouncer Summary

