The University of New Mexico
Text

Turbulent Flows

- RANS Modeling: Turbulent Diffusion
- RANS Modeling: Pressure-containing Correlations
- DNS of a Mixing Layer
- RANS-DNS Framework for UQ in DNS Data
- RANS Modeling of an Axially Rotating Cylindrical Pipe Flow
- Validation of RANS Models in Benchmark Problems

Analytical Solutions

CFD Applications

- Aerosol Transmission
- Shock-Driven Instabilities

Insects, Rotors, and Bio-inspired Designs

Renewable Energy

Power Systems and their Survivability Analysis

Evidence Theory for UQ and Multi-Model Predictions


(some of the preprints are available at ResearchGate)

Turbulent Flows:


RANS Modeling: Turbulent Diffusion

  1. S. V. Poroseva, S. M. Murman, “Analysis of high-order velocity moments in a strained channel flow,” Int.J. Heat Fluid Flow. 89, June 2021.
  2. S. V. Poroseva, B. E. Kaiser, J. A. Sillero, S. M. Murman, “Validation of a closing procedure for fourth-order RANS turbulence models with DNS data in an incompressible zero-pressure-gradient turbulent boundary layer,” Int. J. Heat Fluid Flow , 2015. preprint
  3. A. F. Kurbatskii, S. V. Poroseva, “Modelling turbulent diffusion in a rotating cylindrical pipe flow,” Int. Journal of Heat and Fluid Flow, 1999, 20(3), pp. 341-348.
  4. A. F. Kurbatskii, S. V. Poroseva, “Modelling turbulent diffusion in a rotating cylindrical pipe flow,” Proc. of the UEF 2nd Int. Conf. on Turbulent Heat Transfer (Manchester, UK), 1998, pp. 46-53.
  5. A. F. Kurbatskii, S. V. Poroseva, “A model for calculating the three components of the excess for the turbulent field of flow velocity in a round pipe rotating about its longitudinal axis,” High Temperature, 1997, 35(3), pp. 432-440.
  6. S. V. Poroseva, "High-Order Turbulence Closure in a Fully-Developed Flow in a Cylindrical Pipe (in Russian)," Ph. D. Thesis, 1996, Novosibirsk State University, Novosibirsk.

RANS Modeling: Pressure-containing Correlations

  1. S. V. Poroseva, J. E. Heras Rivera, “Benefits and Challenges of Data-driven Models for Velocity/Pressure-Gradient Correlations in Turbulent Flows, Proc. of the 10th Int. Symposium on Turbulence, Heat and Mass Transfer (THMT-10), Rome, Italy, September 11-15, 2023.
  2. S. V. Poroseva, J. E. Heras Rivera, “On the Contribution of Data Errors in DNS Data-Driven VPG Correlation Models,” Proc. the AIAA Aviation Forum, Chicago, IL, June 27 - July 1, 2022.
  3. S. V. Poroseva, S. M. Murman, “ Sensitivity of a new velocity/pressure-gradient model to Reynolds Number,” Proc. TSFP-10, Chicago, IL, July 6-July 9, 2017.
  4. S. V. Poroseva, S. M. Murman, “ Reynolds-stress simulations of wall-bounded flows using a new velocity/pressure-gradient model,” Proc. TSHP-9, Melbourne, Australia, June 30-July 3, 2015.
  5. S. V. Poroseva, J. D. Colmenares F., S. M. Murman, “RANS simulations of a channel flow with a new velocity/pressure-gradient model,” AIAA2015-3067. preprint
  6. S. V. Poroseva, S. M. Murman, “ On modelling velocity/pressure-gradient correlations in higher-order RANS statistical closures,” Proc. the 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, December 8-11, 2014.
  7. S. V. Poroseva, S. M. Murman, “Velocity/pressure-gradient correlations in a FORANS approach to turbulence modeling,” AIAA2014-2207. preprint
  8. S. V. Poroseva, “ The effect of a pressure-containing correlation model on near-wall flow simulations RST models,” ASME J. Fluids Eng. , 2013, doi:10.1115/1.4025936.
  9. A. Sambasivam, S. S. Girimaji, S. V. Poroseva, “Realizability of Reynolds stress and rapid pressure-strain correlation in turbulence modeling,” J. Turbulence , 2004, 5(6), pp. 1-22.
  10. S. S. Girimaji, E. Jeong, S. V. Poroseva, “Pressure-strain correlation in homogeneous anisotropic turbulence subject to rapid strain-dominated distortion,” Physics of Fluids , 2003, 15(10), pp. 3209-3222.
  11. S. V. Poroseva, “Modeling the “rapid” part of the velocity/pressure-gradient correlation in inhomogeneous turbulence,” Ann. Research Brief 2001, Center for Turbulence Research, NASA-Ames/Stanford University, pp. 367-374.
  12. S. V. Poroseva, "New approach to modeling the pressure – containing correlations," Proc. the 3rd Inter. Symposium on Turbulence, Heat and Mass Transfer . (Nagoya, Japan), 2000, pp. 487-493.
  13. A. F. Kurbatskii, S. V. Poroseva, “A model for calculating the three components of the excess for the turbulent field of flow velocity in a round pipe rotating about its longitudinal axis,” High Temperature, 1997, 35(3), pp. 432-440.
  14. S. V. Poroseva, "High-Order Turbulence Closure in a Fully-Developed Flow in a Cylindrical Pipe (in Russian)," Ph. D. Thesis, 1996, Novosibirsk State University, Novosibirsk.

DNS of a Mixing Layer

  1. . J. D. Colmenares F., M. Abuhegazy, Y. T. Peet, S. M. Murman, S. V. Poroseva, “Sensitivity Analysis of Direct Numerical Simulation of a Spatially Developing Turbulent Mixing Layer to the Domain Dimensions,” ASME V&V Journal of Verification, Validation and Uncertainty Quantification. v. 8, pp. 031001-1 – 031001-14, 2023.
  2. J. D. Colmenares F., S. V. Poroseva, Y. T. Peet, S. M. Murman, “Analysis of uncertainty sources in DNS of a turbulent mixing layer using Nek5000," AIAA2018-3226. preprint
  3. J. D. Colmenares F., S. V. Poroseva, Y. T. Peet, S. M. Murman, “DNS of a spatially developing turbulent mixing layer from co-flowing laminar bundary layers," AIAA2017-3641. preprint

RANS-DNS Framework for UQ in DNS Data

  1. M. Abuhegazy, O. A. Mahfoze, S. V. Poroseva, S. M. Murman, “Application of the RANS- DNS Framework to Post-processing the Mixing Layer DNS Data,” Proc. the AIAA Aviation Forum, Chicago, IL, June 27 - July 1, 2022.
  2. S. V. Poroseva, S. M. Murman, “Analysis of high-order velocity moments in a strained channel flow,” Int.J. Heat Fluid Flow. 89, June 2021.
  3. S. V. Poroseva, J. D. Colmenares F., S. M. Murman, “"On the accuracy of RANS simulations with DNS data," Physics of Fluids , 2016, 28(11). DOI: 10.1063/1.4966639 manuscript.
  4. S. V. Poroseva, E. Jeyapaul, S. M. Murman, J. D. Colmenares F., “The Effect of the DNS Data Averaging Time on the Accuracy of RANS-DNS Simulations,” AIAA2016-3940. preprint

RANS Modeling of an Axially Rotating Cylindrical Pipe Flow

  1. S. V. Poroseva, S. C. Kassinos, C. A. Langer, W. C. Reynolds, “Structure-based turbulence model: application to a rotating pipe flow.” Physics of Fluids, 2002, 14(4), pp. 1523-1532.
  2. S. V. Poroseva, " Wall corrections in modeling rotating pipe flow,” Ann. Research Brief 2001, Center for Turbulence Research, NASA-Ames/Stanford University, pp.385-396.
  3. S. V. Poroseva, S. C. Kassinos, C. A. Langer, W. C. Reynolds, “Computation of a turbulent flow in a rotating pipe using the structure-based model,” Proc. of the 2nd Inter. Symp. Turbulence and Shear Flow Phenomena , June 2001 (Stockholm, Sweden), 3, pp. 149-154.
  4. S. V. Poroseva, S. C. Kassinos, C. A. Langer, W. C. Reynolds, “Computation of a turbulent flow in a rotating pipe using structure-based model ,” Ann. Research Brief 2000, Center for Turbulence Research, NASA-Ames/Stanford University, pp. 279-290.
  5. A. F. Kurbatskii, S. V. Poroseva, “Modelling turbulent diffusion in a rotating cylindrical pipe flow,” Int. Journal of Heat and Fluid Flow, 1999, 20(3), pp. 341-348.
  6. A. F. Kurbatskii, S. V. Poroseva, “ Modeling of the limiting regime of stabilization of the average velocity of a turbulent flow in a rotating straight circular tube,” Journal of Engineering Physics and Thermophysics (JEPTER), 1999, 72(2), pp. 268-289.
  7. P. G. Zaets, A. F. Kurbatskii, A. T. Onufriev, S. V. Poroseva, N. A. Safarov, R. A. Safarov, S. N. Yakovenko, “Experimental study and mathematical simulation of the characteristics of a turbulent flow in a straight circular pipe rotating about its longitudinal axis,” Journal of Applied Mechanics and Tech. Physics, 1998, 39(2), pp. 249-260.
  8. S. V. Poroseva, A. F. Kurbatskii, “ Perspectives of turbulence second-order modelling in a swirling flow,” Lecture Notes in Physics (Charles-Henry Bruneau (ed.) - Springer): the 16th Inter. Conf. on Numerical Methods in Fluid Dynamics, 1998, 515, pp. 207-212.
  9. A. F. Kurbatskii, S. V. Poroseva, “Efficiency of high - order modeling in a rotating cylindrical pipe flow,” Proc. of the 7th Int. Symp. on Flow Modeling and Turbulence Measurements. (Tainan, Taiwan), 1998, pp. 307-313.
  10. A. F. Kurbatskii, S. V. Poroseva, “Modelling turbulent diffusion in a rotating cylindrical pipe flow,” Proc. of the 4th European Computational Fluid Dynamics Conf. (ECCOMAS- 98, Athens, Greece), 1998, pp. 1088-1093.
  11. A. F. Kurbatskii, S. V. Poroseva, “Verification of turbulence second-order models in different regions of a rotating cylindrical pipe flow,” Proc. of the UEF Int. Conf. on the Methods of Aerophysical Research (Novosibirsk, Russia), 1998, pp. 123- 128.
  12. A. F. Kurbatskii, S. V. Poroseva, “Modelling turbulent diffusion in a rotating cylindrical pipe flow,” Proc. of the UEF 2nd Int. Conf. on Turbulent Heat Transfer (Manchester, UK), 1998, pp. 46-53.
  13. A. F. Kurbatskii, S. V. Poroseva, “A model for calculating the three components of the excess for the turbulent field of flow velocity in a round pipe rotating about its longitudinal axis,” High Temperature, 1997, 35(3), pp. 432-440.
  14. A. F. Kurbatskii, S. V. Poroseva, “A model for triple velocity correlations of the turbulent velocity field in a developed flow in a round pipe,” Thermophysics & Aeromechanics, 1997, 4(4), pp. 407-413.
  15. A. F. Kurbatskii, S. V. Poroseva, “Turbulence Model for the Triple Velocity Correlations,”Proc. of the 7th Inter. Symp. on Computational Fluid Dynamics (Beijing, China),1997, pp.435-439.
  16. A. F. Kurbatskii, S. V. Poroseva, S. N. Yakovenko, “Modeling of Statistical Characteristics of a Turbulent Flow in a Rotated Round Pipe,” Proc. of the Saint-Venant Symposium on Multiple Scale Analyses and Coupled Physical Systems (Paris, France), 1997, pp.245-252.
  17. S. V. Poroseva, "High-Order Turbulence Closure in a Fully-Developed Flow in a Cylindrical Pipe (in Russian)," Ph. D. Thesis, 1996, Novosibirsk State University, Novosibirsk.
  18. A. F. Kurbatskii, S. V. Poroseva, S. N. Yakovenko, “Calculation of Turbulent Statistical Characteristics in a Flow in a Rotating Cylindrical Pipe (in Russian),” Proc. of Int. Conf. "Mathematical Models and Numerical Methods of Continuous Medium Mechanics" Ed. acad. Y.I.Shokin (Novosibirsk, Russia), 1996, pp.368-371.
  19. A. F. Kurbatskii, S. V. Poroseva, S. N. Yakovenko, “On modeling one-point fourth- order velocity moment behavior in a developed turbulent flow in a cylindrical pipe,” Thermophysics & Aeromechanics, 1996, 3(1), pp. 57-68.
  20. A. F. Kurbatskii, S. V. Poroseva, “Model for Calculation of the Three-Component Flatness of a Turbulent Flow Velocity Fluctuation in a Cylindrical Pipe Rotating Around its Longitudinal Axis,” Proc. of Int. Conf. on Methods of Aerophys. Research: Part 1 (Novosibirsk, Russia) 1996, pp.169-173.
  21. A. F. Kurbatskii, S. V. Poroseva, S. N. Yakovenko, “ Calculation of statistical characteristics of a turbulent flow in a rotating cylindrical pipe,” High Temperature, 1995, 33(5), pp. 738-748.
  22. S. V. Poroseva, “Third-Order Model Verification for Unrotated and Rotated Turbulent Flows in a Straight Round Pipe,” Proc. of Inter. Conf. on Methods of Aerophys. Research: Part 2 (Novosibirsk, Russia), 1994, pp.207-211.
  23. A. F. Kurbatskii, S. V. Poroseva, S. N. Yakovenko, “Calculation of statistical characteristics of a turbulent flow in a rotated round pipe,” ICAR Paper N 7-94, Scientific Report of the International Center of Aerophysical Researches, Institute of Theoretical and Applied Mechanics, Siberian Branch of Russian Academy of Sciences, 1994, 21 p.

Validation of RANS Models in Benchmark Problems

  1. R. D. Janardhana, M. Abuhegazy, S. V. Poroseva, “Simulation of Two Benchmark Cases: VERIF/2DB and 2DML from Turbulence Modeling Resource using STAR-CCM+ and OpenFOAM,” The AIAA Scitech 2022 Forum, San Diego, CA & Online, January 3-7, 2022.
  2. A. B. Poretous, R. D. Habbit, III, J. D. Colmenares F., S. V. Poroseva, S. M. Murman, “Simulations of Incompressible Separated Turbulent Flows around Two-Dimensional Bodies with URANS Models in OpenFOAM,” AIAA2015-2609. preprint
  3. R. D. Habbit, III, A. B. Porteous, C. M. L. Echavarria, S. V. Poroseva, S. M. Murman, “Computational Analysis of a Flow Around Two-Dimensional Streamlined Bodies with OpenFOAM,” AIAA2015-0519 . preprint
  4. S. Gomez, B. Graves, S. V. Poroseva, “On the Accuracy of RANS Simulations of 2D Boundary Layers with OpenFOAM,” AIAA2014-2087. preprint
  5. M. A. Snider, S. V. Poroseva, “Sensitivity Study of Turbulent Flow Simulations Over a Rotating Disk,” Proc. the 42nd AIAA Fluid Dynamics Conference and Exhibit, AIAA2012-3146. preprint
  6. S. V. Poroseva, G. Iaccarino, “ Simulating separated flows using the k-epsilon model,” Ann. Research Brief 2001, Center for Turbulence Research, NASA-Ames/Stanford Univ., pp. 375-384.
  7. S. V. Poroseva, H. Bézard, “ On ability of standard k-epsilon model to simulate aerodynamic turbulent flows,” CFD Journal, 2001, Special Issue, pp. 627-633.

Analytical Solutions:

  1. S. V. Poroseva, S. S. Girimaji, “ Analytical study of the oscillating channel flow solution with application to the turbulent case," Proc. ASME FEDSM’03, the 4th ASME-JSME Joint Fluids Engineering Conference (Forum on Unsteady Flows), July 2003 (Honolulu, Hawaii), FEDSM2003-45616: 6 p.

CFD Applications:


Aerosol Transmission

  1. L. Xiang, C. W. Lee, O. Zikanov, M. Abuhegazy, S. V. Poroseva, “Reduced order modeling of transport of infectious aerosols in ventilated rooms,” Physics of Fluids, 35(7), 077122, 2023.
  2. A. T. Trajkovska-Broach, R. D. Blum, M. Abuhegazy, S. V. Poroseva, K. Karem, A. R. Rama, “Effective Air Purification for Aircraft Cabins when Face Mask Requirements are Removed,” The 17th Int. Conf. Indoor Air 2022, June 12 – 16, 2022, Kuopio, Finland.
  3. K. Talaat, M. Abuhegazy, Omar Mahfoze, O. Anderoglu, S. V. Poroseva, “Simulation of aerosol transmission on a Boeing 737 airplane with intervention measures for COVID-19 mitigation,” Phys. Fluids 33 (3), 033312, 2021. Featured Article.
  4. M. Abuhegazy, K. Talaat, O. Anderoglu, S. V. Poroseva, “Numerical investigation of aerosol transport in a classroom with relevance to COVID-19,” Phys. Fluids 32(10), 103311, 2020. Featured Article/Press Release.

Shock-Driven Instabilities

  1. B. E. Romero, J. M. Reisner, P. Vorobieff, S. V. Poroseva, “Statistical characterization of a shock interacting with an inclined gas column.” Journal of Fluid Mechanics, 971, A26. 2023.
  2. B. E. Romero, E. Koo, S. V. Poroseva, “Three-Dimensional Simulations of a Shock-Particle Curtain Interaction,” Proc. the AIAA Aviation Forum, Chicago, IL, June 27 - July 1, 2022.
  3. B. E. Romero, S. V. Poroseva, P. Vorobieff, J. M. Reisner, “Three-Dimensional Simulations of a Shock-Gas Column Interaction”, The AIAA Scitech 2022 Forum, San Diego, CA & Online, January 3-7, 2022.
  4. B. E. Romero, S. V. Poroseva, P. Vorobieff, J. Reisner, "Simulations of the Shock Driven Kelvin- Helmholtz Instability in Inclined Gas Curtains", Physics of Fluids, 33 (6), 064103, 2021.
  5. B. E. Romero, P. Vorobieff, S. V. Poroseva, J. M. Reisner, “Three-Dimensional Validation Exercise for FIESTA Code: Evolution Of Shock-Driven instabilities,” WIT Trans. Engineering Sciences, 2021, 132, pp. 3-11. Proc. The 11th Int. Conf. on Advances in Fluids Dynamics with emphasis on Multiphase and Complex Flow, 6-8 July 2021, Virtual Event.
  6. B. E. Romero, S. V. Poroseva, J. Reisner, P. Vorobieff, “Shock Driven Kelvin-Helmholtz Instability,” AIAA 2021-0051, 11–15/19–21 January 2021. AIAA Scitech 2021 Forum, Virtual Event.

Insects, Rotors, and Bio-inspired Designs:

  1. A. M. P. Gordillo, J. Escobar, S. V. Poroseva, O. D. Lopez M., “Aerodynamic Performance of a Quadcopter in Hover Flight with the Unsteady Vortex Lattice Method,” AIAA 2023-3756, Proc. the AIAA Aviation 2023 Forum, San Diego, CA, June 12-16, 2023.
  2. R. M. Starkweather, S. V. Poroseva, D. T. Hanson, “On the Shape of Cicada’s Wing Leading-Edge Cross Section,” Scientific Reports, 11, 7763, 2021.
  3. S. V. Poroseva, D. Charley, P. Vorobieff, “Experimental Drag Study of the Bio-inspired Body Shape,” AIAA 6.2020-3014. paper
  4. A. M. Perez, O. Lopez, S. V. Poroseva, J. A. Escobar, “Computational study of a small rotor at hover using CFD and UVLM,” AIAA2019-0597 . paper
  5. C. Hintz, P. Khanbolouki, A. M. Perez, M. Tehrani, S. V. Poroseva, “Experimental study of the effects of biomimetic blades and 3D printing on the performance of a small propeller,” AIAA2018-3645 . paper
  6. C. M. L. Echavarria, S. V. Poroseva, “Computational Analysis of the Blade Number Effect on the Performance of a Ducted Propeller,” AIAA2015-0016 . paper
  7. S. Gomez, L. N. Gilkey, B. E. Kaiser, S. V. Poroseva, “Computational analysis of a tip vortex structure shed from a bio-inspired blade,” AIAA2014-3253 . paper

Renewable Energy:

  1. B. A. Kendall, S. V. Poroseva, “Assessing Residential Solar Harvesting Potential using the National Solar Radiation Database Across Terrestrial Elevation and Household Income,” Proc. Transforming the Energy Landscape for All: ASES 52nd Annual National Solar Conference 2023 (SOLAR 2023), University of Colorado Boulder, August 8-11, 2023.
  2. P. C. Scott, N. Jackson, S. V. Poroseva, “Dimensional Effects of Polymer Piezoelectric Films for Wind Energy Harvesting,” J. Fluids Engineering, 144: 071203 (10 pages), 2022, Paper No: FE-21-1288.
  3. J. A. Sward, P. C. Scott, P. J. Wayne, N. Jackson, P. Vorobieff, R. Lumia, S. V. Poroseva, “Harvesting energy from an ionic polymer-metal composite in a steady air flow,” J. Fluids Engineering, 142(8): 081204 (6 pages), 2020, Paper No: FE-19-1596, preprint
  4. S. Lee, P. Vorobieff, S. Poroseva, “Interaction of Wind Turbine Wakes under Various Atmospheric Conditions,” Energies. 11(6), 2018, 1442.
  5. A. B. Porteous, B. E. Kaiser, S. V. Poroseva, C. Bond, R. O. Hovsapian, “Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine,” AIAA2014-2279. preprint
  6. B. E. Kaiser, S. V. Poroseva, E. Johnson, R. O. Hovsapian, “Near-Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine,” AIAA2013-2419. preprint
  7. B. E. Kaiser, S. V. Poroseva, M. A. Snider, R. O. Hovsapian, E. Johnson, “Flow Simulation Around a Rim-Driven Wind Turbine And In Its Wake,” Proc. the 58th ASME Turbo Exposition , San Antonio, TX, June 3-7, 2013.
  8. A. J. Rankin, S. V. Poroseva, R. O. Hovsapian, “Power curve data analysis for rim driven wind turbine,” ASME Early Career Technical Journal, 2012 (10), p.27-32.

Power Systems and their Survivability Analysis:

  1. J. E. Heras Rivera, S. V. Poroseva, “DNN power grid classifier as a surrogate for graph-search algorithms for the survivability analysis,” Proc. of the 2023 Clearwater Clean Energy Conference, Clearwater, FL, July 23-27, 2023.
  2. S. V. Poroseva, K. R. Soules, S. M. Shafiul Alam, M. Panwar, R. Hovsapian, “A Benchmark Case for the Grid Survivability Analysis,” PESGM2021-000396, Proc. 2021 IEEE PES General Meeting, 26-29 July 2021, Washington, DC (Virtual).
  3. S. V. Poroseva, J. Lowe, B. E. Kaiser, “Application of the “Selfish” Algorithm for the Survivability Analysis of Systems with Multiple Loads,” AIAA2014-0356. preprint
  4. B. E. Kaiser, S. V. Poroseva, “Survivability Analysis of the Satellite Electrical Power Subsystem Architecture,” AIAA2013-1484. preprint
  5. S. Abdollahy, O. Lavrova, N. Heine, S. Poroseva, A. Mammoli, “Integrating heterogeneous distributed energy resources to manage intermittent power at low cost,” Proc. of the 1st IEEE Conference on Technologies for Sustainability , Portland, OR, August 1-2, 2013.
  6. S. V. Poroseva, ““Selfish” algorithm for reducing the computational cost of the network survivability analysis,” Journal of Optimization and Engineering, 2012, doi:10.1007/s11081-012-9207-1.The final publication is available at http://link.springer.com. preprint
  7. S. V. Poroseva and P. A. Rikvold, "Optimization of Survivability Analysis for Large-Scale Engineering Networks", in Proceedings of the Eighth International Conference on Engineering Computational Technology, B.H.V. Topping, (Editor), Civil-Comp Press, Stirlingshire, United Kingdom, paper 53, 2012. doi:10.4203/ccp.100.53
  8. P. A. Rikvold, I. Abou Hamad, B. Israels, S. V. Poroseva, “Modeling power grids,” Physics Procedia, v.34, 2012, pp. 119-123.
  9. D. Neumayr, S. V. Poroseva, “On Development of Computational Tools for Evaluating System Survivability Due to Its Topology,” AIAA2011-1818. preprint
  10. I. Abou Hamad, P. A. Rikvold, S. V. Poroseva, “Floridian high-voltage power grid network partitioning and cluster optimization using simulated annealing,” Physics Procedia, v.15, 2011, pp. 2-6.
  11. S. V. Poroseva, “On Reducing Computational Complexity in Evaluating the Topological Survivability of Power Systems,” Proc. of the International Simulation Multiconference: Grand Challenges in Modeling and Simulation Conference (GCMS’10), July 11-14, 2010 (Ottawa, Canada), pp.27-31.
  12. R. D. Ford, S. V. Poroseva, “On the Application of Peer-to-Peer Networking to Improve the Reliability of Power Systems-Integrated Communication Networks”, Proc. of the FREEDM Systems Center Conference, May 18-20, 2010 (Tallahassee, FL).
  13. S. V. Poroseva, “Designing Power System Topologies of Enhanced Survivability,” AIAA2010-2572. preprint
  14. S. V. Poroseva, "Computational analysis of network survivability with application to power systems," Physics Procedia, v.4, 2010, pp. 113-117.
  15. I. Abou Hamad, B. Israels, P. A. Rikvold, S. V. Poroseva, “Spectral Matrix Methods for Partitioning Power Grids: Applications to the Italian and Floridian High-Voltage Networks,” Physics Procedia, v.4, 2010, pp. 125-129.
  16. D. Düstegör, S. V. Poroseva, M. Y. Hussaini, S. L. Woodruff, “Automated Graph-Based Methodology for Fault Detection and Isolation in Power Systems,” IEEE Trans. Power Delivery, 25 (2), 2010, pp. 638-646.
  17. D. Lee, D. Infante, J. Langston, S. V. Poroseva, M. Steurer, T. Baldwin, “Grounding Studies in a Shipboard MVDC Integrated Power System with Uncertain Parameters,” Proc. of the Inter. Simulation Multiconference: Grand Challenges in Modeling and Simulation Conference (GCMS’10), July 11-14, 2010 (Ottawa, Canada), pp. 113-120.
  18. D. Lee, D. Infante, J. Langston, S. V. Poroseva, M. Steurer, T. Baldwin, “Assessment of Impact of Modeling Simplifications for a Medium Voltage DC Shipboard Power System,” AIAA2010-3013. preprint
  19. S. V. Poroseva, “Computational Analysis of Power Grid Resilience,” Proc. of the FREEDM Systems Center Conference, May 18-19, 2009 (Raleigh, NC).
  20. S. V. Poroseva, N. Lay, M. Y. Hussaini, “Algorithm Development for Evaluating the IPS Survivability due to its Topology,” Proc. of the IEEE Electric Ship Technologies Symposium (IEEE ESTS 2009), April 20-22, 2009 (Baltimore, MD), pp. 253-260.
  21. J. Langston, C. Edrington, S. V. Poroseva, M. Steurer, O. A. Vanli, “Uncertainty Quantification in Response Surface Models in Parametric Analyses,” Proc. of the International Simulation Multiconference: Grand Challenges in Modeling and Simulation Conference (GCMS’09) , July 13-16, 2009 (Istanbul, Turkey), pp. 128-135.
  22. S. V. Poroseva, S. L. Woodruff, M. Y. Hussaini, “Modeling Topological Survivability of Power Systems,” Proc. of the Grand Challenges in Modeling and Simulation Conference (GCMS’08), June 16-19, 2008 (Edinburgh, UK).
  23. S. V. Poroseva, S. L. Woodruff, M. Y. Hussaini, “Designing Survivable Power Systems,” Proc. of the IEEE PES Transmission and Distribution Conference and Exhibition, April 21- 24, 2008 (Chicago, IL).
  24. D. Düstegör, S. V. Poroseva, M. Y. Hussaini, S. L. Woodruff, “Structural Analysis for Assessment of Monitoring Possibilities: Application to Simple Power System Topologies,” Proc. of the IEEE PES General Meeting, July 20-24, 2008 (Pittsburgh).
  25. D. Düstegör, S. V. Poroseva, M. Y. Hussaini, S. L. Woodruff, “A New Methodology for Automated Assessment of Fault Detection and Isolation Potential in Large Power Systems,” Proc. of the Grand Challenges in Modeling & Simulation Conference (GCMS’08), June 16- 19, 2008 (Edinburgh, UK).
  26. S. V. Poroseva, S. L. Woodruff, M. Y. Hussaini, “Application of Web-Topology to Enhance Survivability of the Integrated Power System in an All-Electric Warship,” Proc. of the Ships & Ship Systems Technology Symposium, November 13-14, 2006 (West Bethesda, Maryland).
  27. S. V. Poroseva, Y. P. Li, M. J. Willis, S. L. Woodruff, M. Y. Hussaini, “Enhancing Survivability of All-Electric Warships through Implementation of Effective Topologies into the Integrated Power System,” Proc. of the ASNE Day 2006, June 19-21, 2006 (Arlington, VA).
  28. S. V. Poroseva, S. L. Woodruff, M. Y. Hussaini, “Topology of the Generator Bus in a Warship Integrated Power System,” Proc. the IEEE Electric Ship Technologies Symposium , July 25-27, 2005 (Philadelphia, PA), pp.141-148.

Evidence Theory for UQ and Multi-Model Predictions:

  1. T. A. Zang, S. Poroseva, Preface, Theoretical and Computational Fluid Dynamics, v. 26(5), 2012, p. 401, doi:10.1007/s00162-012-0285-7.
  2. S. V. Poroseva, Y. He, M. Y. Hussaini, R. R. Mankbadi, “Uncertainty Quantification in the Horizontal Projection of Flight Plan Trajectories Using Evidence Theory,” AIAA2011-1759. preprint
  3. S. V. Poroseva, N. Lay, M. Y. Hussaini, “Multimodel Approach Based on Evidence Theory for Forecasting Hurricane/Typhoon Tracks: Further Improvements,” Monthly Weather Review, 138 (2), 2010, pp. 405-420.
  4. Y. He, S. V. Poroseva, M. Y. Hussaini, R. R. Mankbadi, “Uncertainty Quantification in Flight Plan Horizontal Path Using Evidence Theory,” Proc. of the 2st FCAAP Annual Technical Symposium, August 9-10, 2010 (Tallahassee, FL).
  5. S. V. Poroseva, Y. He, M. Y. Hussaini, J. J. Pesce, R. R. Mankbadi, “Uncertainty Quantification in Flight Plans Using Evidence Theory,” AIAA2010-2678 . preprint
  6. S. V. Poroseva, M. Y. Hussaini, R. R. Mankbadi, “Uncertainty Quantification in Flight Departure and Arrival Time Using Dempster-Shafer Theory of Evidence,” Proc. the 1st FCAAP Annual Technical Symposium , August 13-14, 2009 (Orlando, FL).
  7. S. V. Poroseva, “Multimodel approach based on evidence theory for reducing uncertainty in simulations,” Proc. of the 6th International Conference on Engineering Computational Technology, September 2-5, 2008 (Athens, Greece).
  8. S. V. Poroseva, J. Letschert, M. Y. Hussaini, “Application of Evidence Theory to Quantify Uncertainty in Hurricane/Typhoon Tracks Forecasts,” Meteorology and Atmospheric Physics, Special issue on tropical cyclones, 97, 2007, pp. 149-169.
  9. S. V. Poroseva, J. Letschert, M. Y. Hussaini, “Application of Evidence Theory to Quantify Uncertainty in Forecast of Hurricane Path,” Proc. of the 18th Conference on Probability and Statistics, the American Meteorological Society 86th Annual Meeting, January 29 – February 2, 2006 (Atlanta, GA).
  10. S. V. Poroseva, M. Y. Hussaini, S. L. Woodruff, “ On Improving the Predictive Capability of Turbulence Models Using Evidence Theory ,” AIAA Journal , 2006, 44(6), pp. 1220-1228. preprint
  11. S. V. Poroseva, M. Y. Hussaini, S. L. Woodruff, “A Systematic Approach for Quantifying and Improving CFD Computations of Complex Flows,” Proc. of the 4th International Symposium on Turbulence & Shear Flow Phenomena, June 2005 (Williamsburg, Virginia), 2, pp. 543-548.
  12. S. V. Poroseva, M. Y. Hussaini, S. L. Woodruff, “On Improving the Predictive Capability of Turbulence Models Using Evidence Theory,” Proc. of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-1096, January 2005 (Reno, Nevada), 9 p.